Metamath Proof Explorer


Theorem ntrf

Description: The interior function of a topology is a map from the powerset of the base set to the open sets of the topology. (Contributed by RP, 22-Apr-2021)

Ref Expression
Hypotheses ntrrn.x X=J
ntrrn.i I=intJ
Assertion ntrf JTopI:𝒫XJ

Proof

Step Hyp Ref Expression
1 ntrrn.x X=J
2 ntrrn.i I=intJ
3 vpwex 𝒫sV
4 3 inex2 J𝒫sV
5 4 uniex J𝒫sV
6 eqid s𝒫XJ𝒫s=s𝒫XJ𝒫s
7 5 6 fnmpti s𝒫XJ𝒫sFn𝒫X
8 1 ntrfval JTopintJ=s𝒫XJ𝒫s
9 2 8 eqtrid JTopI=s𝒫XJ𝒫s
10 9 fneq1d JTopIFn𝒫Xs𝒫XJ𝒫sFn𝒫X
11 7 10 mpbiri JTopIFn𝒫X
12 1 2 ntrrn JTopranIJ
13 df-f I:𝒫XJIFn𝒫XranIJ
14 11 12 13 sylanbrc JTopI:𝒫XJ