Metamath Proof Explorer


Theorem ntrf

Description: The interior function of a topology is a map from the powerset of the base set to the open sets of the topology. (Contributed by RP, 22-Apr-2021)

Ref Expression
Hypotheses ntrrn.x X = J
ntrrn.i I = int J
Assertion ntrf J Top I : 𝒫 X J

Proof

Step Hyp Ref Expression
1 ntrrn.x X = J
2 ntrrn.i I = int J
3 vpwex 𝒫 s V
4 3 inex2 J 𝒫 s V
5 4 uniex J 𝒫 s V
6 eqid s 𝒫 X J 𝒫 s = s 𝒫 X J 𝒫 s
7 5 6 fnmpti s 𝒫 X J 𝒫 s Fn 𝒫 X
8 1 ntrfval J Top int J = s 𝒫 X J 𝒫 s
9 2 8 syl5eq J Top I = s 𝒫 X J 𝒫 s
10 9 fneq1d J Top I Fn 𝒫 X s 𝒫 X J 𝒫 s Fn 𝒫 X
11 7 10 mpbiri J Top I Fn 𝒫 X
12 1 2 ntrrn J Top ran I J
13 df-f I : 𝒫 X J I Fn 𝒫 X ran I J
14 11 12 13 sylanbrc J Top I : 𝒫 X J