Description: The interior function of a topology is a map from the powerset of the base set to the open sets of the topology. (Contributed by RP, 22-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ntrrn.x | |
|
ntrrn.i | |
||
Assertion | ntrf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrrn.x | |
|
2 | ntrrn.i | |
|
3 | vpwex | |
|
4 | 3 | inex2 | |
5 | 4 | uniex | |
6 | eqid | |
|
7 | 5 6 | fnmpti | |
8 | 1 | ntrfval | |
9 | 2 8 | eqtrid | |
10 | 9 | fneq1d | |
11 | 7 10 | mpbiri | |
12 | 1 2 | ntrrn | |
13 | df-f | |
|
14 | 11 12 13 | sylanbrc | |