Step |
Hyp |
Ref |
Expression |
1 |
|
ntrrn.x |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
ntrrn.i |
⊢ 𝐼 = ( int ‘ 𝐽 ) |
3 |
|
vpwex |
⊢ 𝒫 𝑠 ∈ V |
4 |
3
|
inex2 |
⊢ ( 𝐽 ∩ 𝒫 𝑠 ) ∈ V |
5 |
4
|
uniex |
⊢ ∪ ( 𝐽 ∩ 𝒫 𝑠 ) ∈ V |
6 |
|
eqid |
⊢ ( 𝑠 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑠 ) ) = ( 𝑠 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑠 ) ) |
7 |
5 6
|
fnmpti |
⊢ ( 𝑠 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑠 ) ) Fn 𝒫 𝑋 |
8 |
1
|
ntrfval |
⊢ ( 𝐽 ∈ Top → ( int ‘ 𝐽 ) = ( 𝑠 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑠 ) ) ) |
9 |
2 8
|
syl5eq |
⊢ ( 𝐽 ∈ Top → 𝐼 = ( 𝑠 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑠 ) ) ) |
10 |
9
|
fneq1d |
⊢ ( 𝐽 ∈ Top → ( 𝐼 Fn 𝒫 𝑋 ↔ ( 𝑠 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑠 ) ) Fn 𝒫 𝑋 ) ) |
11 |
7 10
|
mpbiri |
⊢ ( 𝐽 ∈ Top → 𝐼 Fn 𝒫 𝑋 ) |
12 |
1 2
|
ntrrn |
⊢ ( 𝐽 ∈ Top → ran 𝐼 ⊆ 𝐽 ) |
13 |
|
df-f |
⊢ ( 𝐼 : 𝒫 𝑋 ⟶ 𝐽 ↔ ( 𝐼 Fn 𝒫 𝑋 ∧ ran 𝐼 ⊆ 𝐽 ) ) |
14 |
11 12 13
|
sylanbrc |
⊢ ( 𝐽 ∈ Top → 𝐼 : 𝒫 𝑋 ⟶ 𝐽 ) |