Metamath Proof Explorer


Theorem ntrf

Description: The interior function of a topology is a map from the powerset of the base set to the open sets of the topology. (Contributed by RP, 22-Apr-2021)

Ref Expression
Hypotheses ntrrn.x 𝑋 = 𝐽
ntrrn.i 𝐼 = ( int ‘ 𝐽 )
Assertion ntrf ( 𝐽 ∈ Top → 𝐼 : 𝒫 𝑋𝐽 )

Proof

Step Hyp Ref Expression
1 ntrrn.x 𝑋 = 𝐽
2 ntrrn.i 𝐼 = ( int ‘ 𝐽 )
3 vpwex 𝒫 𝑠 ∈ V
4 3 inex2 ( 𝐽 ∩ 𝒫 𝑠 ) ∈ V
5 4 uniex ( 𝐽 ∩ 𝒫 𝑠 ) ∈ V
6 eqid ( 𝑠 ∈ 𝒫 𝑋 ( 𝐽 ∩ 𝒫 𝑠 ) ) = ( 𝑠 ∈ 𝒫 𝑋 ( 𝐽 ∩ 𝒫 𝑠 ) )
7 5 6 fnmpti ( 𝑠 ∈ 𝒫 𝑋 ( 𝐽 ∩ 𝒫 𝑠 ) ) Fn 𝒫 𝑋
8 1 ntrfval ( 𝐽 ∈ Top → ( int ‘ 𝐽 ) = ( 𝑠 ∈ 𝒫 𝑋 ( 𝐽 ∩ 𝒫 𝑠 ) ) )
9 2 8 syl5eq ( 𝐽 ∈ Top → 𝐼 = ( 𝑠 ∈ 𝒫 𝑋 ( 𝐽 ∩ 𝒫 𝑠 ) ) )
10 9 fneq1d ( 𝐽 ∈ Top → ( 𝐼 Fn 𝒫 𝑋 ↔ ( 𝑠 ∈ 𝒫 𝑋 ( 𝐽 ∩ 𝒫 𝑠 ) ) Fn 𝒫 𝑋 ) )
11 7 10 mpbiri ( 𝐽 ∈ Top → 𝐼 Fn 𝒫 𝑋 )
12 1 2 ntrrn ( 𝐽 ∈ Top → ran 𝐼𝐽 )
13 df-f ( 𝐼 : 𝒫 𝑋𝐽 ↔ ( 𝐼 Fn 𝒫 𝑋 ∧ ran 𝐼𝐽 ) )
14 11 12 13 sylanbrc ( 𝐽 ∈ Top → 𝐼 : 𝒫 𝑋𝐽 )