| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrrn.x | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | ntrrn.i | ⊢ 𝐼  =  ( int ‘ 𝐽 ) | 
						
							| 3 |  | vpwex | ⊢ 𝒫  𝑠  ∈  V | 
						
							| 4 | 3 | inex2 | ⊢ ( 𝐽  ∩  𝒫  𝑠 )  ∈  V | 
						
							| 5 | 4 | uniex | ⊢ ∪  ( 𝐽  ∩  𝒫  𝑠 )  ∈  V | 
						
							| 6 |  | eqid | ⊢ ( 𝑠  ∈  𝒫  𝑋  ↦  ∪  ( 𝐽  ∩  𝒫  𝑠 ) )  =  ( 𝑠  ∈  𝒫  𝑋  ↦  ∪  ( 𝐽  ∩  𝒫  𝑠 ) ) | 
						
							| 7 | 5 6 | fnmpti | ⊢ ( 𝑠  ∈  𝒫  𝑋  ↦  ∪  ( 𝐽  ∩  𝒫  𝑠 ) )  Fn  𝒫  𝑋 | 
						
							| 8 | 1 | ntrfval | ⊢ ( 𝐽  ∈  Top  →  ( int ‘ 𝐽 )  =  ( 𝑠  ∈  𝒫  𝑋  ↦  ∪  ( 𝐽  ∩  𝒫  𝑠 ) ) ) | 
						
							| 9 | 2 8 | eqtrid | ⊢ ( 𝐽  ∈  Top  →  𝐼  =  ( 𝑠  ∈  𝒫  𝑋  ↦  ∪  ( 𝐽  ∩  𝒫  𝑠 ) ) ) | 
						
							| 10 | 9 | fneq1d | ⊢ ( 𝐽  ∈  Top  →  ( 𝐼  Fn  𝒫  𝑋  ↔  ( 𝑠  ∈  𝒫  𝑋  ↦  ∪  ( 𝐽  ∩  𝒫  𝑠 ) )  Fn  𝒫  𝑋 ) ) | 
						
							| 11 | 7 10 | mpbiri | ⊢ ( 𝐽  ∈  Top  →  𝐼  Fn  𝒫  𝑋 ) | 
						
							| 12 | 1 2 | ntrrn | ⊢ ( 𝐽  ∈  Top  →  ran  𝐼  ⊆  𝐽 ) | 
						
							| 13 |  | df-f | ⊢ ( 𝐼 : 𝒫  𝑋 ⟶ 𝐽  ↔  ( 𝐼  Fn  𝒫  𝑋  ∧  ran  𝐼  ⊆  𝐽 ) ) | 
						
							| 14 | 11 12 13 | sylanbrc | ⊢ ( 𝐽  ∈  Top  →  𝐼 : 𝒫  𝑋 ⟶ 𝐽 ) |