Metamath Proof Explorer


Theorem ntrrn

Description: The range of the interior function of a topology a subset of the open sets of the topology. (Contributed by RP, 22-Apr-2021)

Ref Expression
Hypotheses ntrrn.x 𝑋 = 𝐽
ntrrn.i 𝐼 = ( int ‘ 𝐽 )
Assertion ntrrn ( 𝐽 ∈ Top → ran 𝐼𝐽 )

Proof

Step Hyp Ref Expression
1 ntrrn.x 𝑋 = 𝐽
2 ntrrn.i 𝐼 = ( int ‘ 𝐽 )
3 2 rneqi ran 𝐼 = ran ( int ‘ 𝐽 )
4 vpwex 𝒫 𝑠 ∈ V
5 4 inex2 ( 𝐽 ∩ 𝒫 𝑠 ) ∈ V
6 5 uniex ( 𝐽 ∩ 𝒫 𝑠 ) ∈ V
7 6 rgenw 𝑠 ∈ 𝒫 𝑋 ( 𝐽 ∩ 𝒫 𝑠 ) ∈ V
8 nfcv 𝑠 𝒫 𝑋
9 8 fnmptf ( ∀ 𝑠 ∈ 𝒫 𝑋 ( 𝐽 ∩ 𝒫 𝑠 ) ∈ V → ( 𝑠 ∈ 𝒫 𝑋 ( 𝐽 ∩ 𝒫 𝑠 ) ) Fn 𝒫 𝑋 )
10 7 9 mp1i ( 𝐽 ∈ Top → ( 𝑠 ∈ 𝒫 𝑋 ( 𝐽 ∩ 𝒫 𝑠 ) ) Fn 𝒫 𝑋 )
11 1 ntrfval ( 𝐽 ∈ Top → ( int ‘ 𝐽 ) = ( 𝑠 ∈ 𝒫 𝑋 ( 𝐽 ∩ 𝒫 𝑠 ) ) )
12 11 fneq1d ( 𝐽 ∈ Top → ( ( int ‘ 𝐽 ) Fn 𝒫 𝑋 ↔ ( 𝑠 ∈ 𝒫 𝑋 ( 𝐽 ∩ 𝒫 𝑠 ) ) Fn 𝒫 𝑋 ) )
13 10 12 mpbird ( 𝐽 ∈ Top → ( int ‘ 𝐽 ) Fn 𝒫 𝑋 )
14 elpwi ( 𝑠 ∈ 𝒫 𝑋𝑠𝑋 )
15 1 ntropn ( ( 𝐽 ∈ Top ∧ 𝑠𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑠 ) ∈ 𝐽 )
16 15 ex ( 𝐽 ∈ Top → ( 𝑠𝑋 → ( ( int ‘ 𝐽 ) ‘ 𝑠 ) ∈ 𝐽 ) )
17 14 16 syl5 ( 𝐽 ∈ Top → ( 𝑠 ∈ 𝒫 𝑋 → ( ( int ‘ 𝐽 ) ‘ 𝑠 ) ∈ 𝐽 ) )
18 17 ralrimiv ( 𝐽 ∈ Top → ∀ 𝑠 ∈ 𝒫 𝑋 ( ( int ‘ 𝐽 ) ‘ 𝑠 ) ∈ 𝐽 )
19 fnfvrnss ( ( ( int ‘ 𝐽 ) Fn 𝒫 𝑋 ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( ( int ‘ 𝐽 ) ‘ 𝑠 ) ∈ 𝐽 ) → ran ( int ‘ 𝐽 ) ⊆ 𝐽 )
20 13 18 19 syl2anc ( 𝐽 ∈ Top → ran ( int ‘ 𝐽 ) ⊆ 𝐽 )
21 3 20 eqsstrid ( 𝐽 ∈ Top → ran 𝐼𝐽 )