| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ntrrn.x |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
ntrrn.i |
⊢ 𝐼 = ( int ‘ 𝐽 ) |
| 3 |
2
|
rneqi |
⊢ ran 𝐼 = ran ( int ‘ 𝐽 ) |
| 4 |
|
vpwex |
⊢ 𝒫 𝑠 ∈ V |
| 5 |
4
|
inex2 |
⊢ ( 𝐽 ∩ 𝒫 𝑠 ) ∈ V |
| 6 |
5
|
uniex |
⊢ ∪ ( 𝐽 ∩ 𝒫 𝑠 ) ∈ V |
| 7 |
6
|
rgenw |
⊢ ∀ 𝑠 ∈ 𝒫 𝑋 ∪ ( 𝐽 ∩ 𝒫 𝑠 ) ∈ V |
| 8 |
|
nfcv |
⊢ Ⅎ 𝑠 𝒫 𝑋 |
| 9 |
8
|
fnmptf |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝑋 ∪ ( 𝐽 ∩ 𝒫 𝑠 ) ∈ V → ( 𝑠 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑠 ) ) Fn 𝒫 𝑋 ) |
| 10 |
7 9
|
mp1i |
⊢ ( 𝐽 ∈ Top → ( 𝑠 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑠 ) ) Fn 𝒫 𝑋 ) |
| 11 |
1
|
ntrfval |
⊢ ( 𝐽 ∈ Top → ( int ‘ 𝐽 ) = ( 𝑠 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑠 ) ) ) |
| 12 |
11
|
fneq1d |
⊢ ( 𝐽 ∈ Top → ( ( int ‘ 𝐽 ) Fn 𝒫 𝑋 ↔ ( 𝑠 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑠 ) ) Fn 𝒫 𝑋 ) ) |
| 13 |
10 12
|
mpbird |
⊢ ( 𝐽 ∈ Top → ( int ‘ 𝐽 ) Fn 𝒫 𝑋 ) |
| 14 |
|
elpwi |
⊢ ( 𝑠 ∈ 𝒫 𝑋 → 𝑠 ⊆ 𝑋 ) |
| 15 |
1
|
ntropn |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑠 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑠 ) ∈ 𝐽 ) |
| 16 |
15
|
ex |
⊢ ( 𝐽 ∈ Top → ( 𝑠 ⊆ 𝑋 → ( ( int ‘ 𝐽 ) ‘ 𝑠 ) ∈ 𝐽 ) ) |
| 17 |
14 16
|
syl5 |
⊢ ( 𝐽 ∈ Top → ( 𝑠 ∈ 𝒫 𝑋 → ( ( int ‘ 𝐽 ) ‘ 𝑠 ) ∈ 𝐽 ) ) |
| 18 |
17
|
ralrimiv |
⊢ ( 𝐽 ∈ Top → ∀ 𝑠 ∈ 𝒫 𝑋 ( ( int ‘ 𝐽 ) ‘ 𝑠 ) ∈ 𝐽 ) |
| 19 |
|
fnfvrnss |
⊢ ( ( ( int ‘ 𝐽 ) Fn 𝒫 𝑋 ∧ ∀ 𝑠 ∈ 𝒫 𝑋 ( ( int ‘ 𝐽 ) ‘ 𝑠 ) ∈ 𝐽 ) → ran ( int ‘ 𝐽 ) ⊆ 𝐽 ) |
| 20 |
13 18 19
|
syl2anc |
⊢ ( 𝐽 ∈ Top → ran ( int ‘ 𝐽 ) ⊆ 𝐽 ) |
| 21 |
3 20
|
eqsstrid |
⊢ ( 𝐽 ∈ Top → ran 𝐼 ⊆ 𝐽 ) |