| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrrn.x | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | ntrrn.i | ⊢ 𝐼  =  ( int ‘ 𝐽 ) | 
						
							| 3 | 2 | rneqi | ⊢ ran  𝐼  =  ran  ( int ‘ 𝐽 ) | 
						
							| 4 |  | vpwex | ⊢ 𝒫  𝑠  ∈  V | 
						
							| 5 | 4 | inex2 | ⊢ ( 𝐽  ∩  𝒫  𝑠 )  ∈  V | 
						
							| 6 | 5 | uniex | ⊢ ∪  ( 𝐽  ∩  𝒫  𝑠 )  ∈  V | 
						
							| 7 | 6 | rgenw | ⊢ ∀ 𝑠  ∈  𝒫  𝑋 ∪  ( 𝐽  ∩  𝒫  𝑠 )  ∈  V | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑠 𝒫  𝑋 | 
						
							| 9 | 8 | fnmptf | ⊢ ( ∀ 𝑠  ∈  𝒫  𝑋 ∪  ( 𝐽  ∩  𝒫  𝑠 )  ∈  V  →  ( 𝑠  ∈  𝒫  𝑋  ↦  ∪  ( 𝐽  ∩  𝒫  𝑠 ) )  Fn  𝒫  𝑋 ) | 
						
							| 10 | 7 9 | mp1i | ⊢ ( 𝐽  ∈  Top  →  ( 𝑠  ∈  𝒫  𝑋  ↦  ∪  ( 𝐽  ∩  𝒫  𝑠 ) )  Fn  𝒫  𝑋 ) | 
						
							| 11 | 1 | ntrfval | ⊢ ( 𝐽  ∈  Top  →  ( int ‘ 𝐽 )  =  ( 𝑠  ∈  𝒫  𝑋  ↦  ∪  ( 𝐽  ∩  𝒫  𝑠 ) ) ) | 
						
							| 12 | 11 | fneq1d | ⊢ ( 𝐽  ∈  Top  →  ( ( int ‘ 𝐽 )  Fn  𝒫  𝑋  ↔  ( 𝑠  ∈  𝒫  𝑋  ↦  ∪  ( 𝐽  ∩  𝒫  𝑠 ) )  Fn  𝒫  𝑋 ) ) | 
						
							| 13 | 10 12 | mpbird | ⊢ ( 𝐽  ∈  Top  →  ( int ‘ 𝐽 )  Fn  𝒫  𝑋 ) | 
						
							| 14 |  | elpwi | ⊢ ( 𝑠  ∈  𝒫  𝑋  →  𝑠  ⊆  𝑋 ) | 
						
							| 15 | 1 | ntropn | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑠  ⊆  𝑋 )  →  ( ( int ‘ 𝐽 ) ‘ 𝑠 )  ∈  𝐽 ) | 
						
							| 16 | 15 | ex | ⊢ ( 𝐽  ∈  Top  →  ( 𝑠  ⊆  𝑋  →  ( ( int ‘ 𝐽 ) ‘ 𝑠 )  ∈  𝐽 ) ) | 
						
							| 17 | 14 16 | syl5 | ⊢ ( 𝐽  ∈  Top  →  ( 𝑠  ∈  𝒫  𝑋  →  ( ( int ‘ 𝐽 ) ‘ 𝑠 )  ∈  𝐽 ) ) | 
						
							| 18 | 17 | ralrimiv | ⊢ ( 𝐽  ∈  Top  →  ∀ 𝑠  ∈  𝒫  𝑋 ( ( int ‘ 𝐽 ) ‘ 𝑠 )  ∈  𝐽 ) | 
						
							| 19 |  | fnfvrnss | ⊢ ( ( ( int ‘ 𝐽 )  Fn  𝒫  𝑋  ∧  ∀ 𝑠  ∈  𝒫  𝑋 ( ( int ‘ 𝐽 ) ‘ 𝑠 )  ∈  𝐽 )  →  ran  ( int ‘ 𝐽 )  ⊆  𝐽 ) | 
						
							| 20 | 13 18 19 | syl2anc | ⊢ ( 𝐽  ∈  Top  →  ran  ( int ‘ 𝐽 )  ⊆  𝐽 ) | 
						
							| 21 | 3 20 | eqsstrid | ⊢ ( 𝐽  ∈  Top  →  ran  𝐼  ⊆  𝐽 ) |