Metamath Proof Explorer


Theorem ntrf2

Description: The interior function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021)

Ref Expression
Hypotheses ntrrn.x X = J
ntrrn.i I = int J
Assertion ntrf2 J Top I : 𝒫 X 𝒫 X

Proof

Step Hyp Ref Expression
1 ntrrn.x X = J
2 ntrrn.i I = int J
3 1 2 ntrf J Top I : 𝒫 X J
4 1 toptopon J Top J TopOn X
5 topgele J TopOn X X J J 𝒫 X
6 4 5 sylbi J Top X J J 𝒫 X
7 6 simprd J Top J 𝒫 X
8 3 7 fssd J Top I : 𝒫 X 𝒫 X