Metamath Proof Explorer


Theorem ntrfval

Description: The interior function on the subsets of a topology's base set. (Contributed by NM, 10-Sep-2006) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Hypothesis cldval.1 X=J
Assertion ntrfval JTopintJ=x𝒫XJ𝒫x

Proof

Step Hyp Ref Expression
1 cldval.1 X=J
2 1 topopn JTopXJ
3 pwexg XJ𝒫XV
4 mptexg 𝒫XVx𝒫XJ𝒫xV
5 2 3 4 3syl JTopx𝒫XJ𝒫xV
6 unieq j=Jj=J
7 6 1 eqtr4di j=Jj=X
8 7 pweqd j=J𝒫j=𝒫X
9 ineq1 j=Jj𝒫x=J𝒫x
10 9 unieqd j=Jj𝒫x=J𝒫x
11 8 10 mpteq12dv j=Jx𝒫jj𝒫x=x𝒫XJ𝒫x
12 df-ntr int=jTopx𝒫jj𝒫x
13 11 12 fvmptg JTopx𝒫XJ𝒫xVintJ=x𝒫XJ𝒫x
14 5 13 mpdan JTopintJ=x𝒫XJ𝒫x