Metamath Proof Explorer


Theorem ntrneibex

Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , then the base set exists. (Contributed by RP, 29-May-2021)

Ref Expression
Hypotheses ntrnei.o O=iV,jVk𝒫jiljmi|lkm
ntrnei.f F=𝒫BOB
ntrnei.r φIFN
Assertion ntrneibex φBV

Proof

Step Hyp Ref Expression
1 ntrnei.o O=iV,jVk𝒫jiljmi|lkm
2 ntrnei.f F=𝒫BOB
3 ntrnei.r φIFN
4 oveq2 i=a𝒫ji=𝒫ja
5 rabeq i=ami|lkm=ma|lkm
6 5 mpteq2dv i=aljmi|lkm=ljma|lkm
7 4 6 mpteq12dv i=ak𝒫jiljmi|lkm=k𝒫jaljma|lkm
8 pweq j=b𝒫j=𝒫b
9 8 oveq1d j=b𝒫ja=𝒫ba
10 mpteq1 j=bljma|lkm=lbma|lkm
11 9 10 mpteq12dv j=bk𝒫jaljma|lkm=k𝒫balbma|lkm
12 7 11 cbvmpov iV,jVk𝒫jiljmi|lkm=aV,bVk𝒫balbma|lkm
13 1 12 eqtri O=aV,bVk𝒫balbma|lkm
14 2 a1i φF=𝒫BOB
15 13 3 14 brovmptimex2 φBV