Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Exploring Topology via Seifert and Threlfall
Generic Pseudoclosure Spaces, Pseudointerior Spaces, and Pseudoneighborhoods
ntrneif1o
Metamath Proof Explorer
Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related
by the operator, F , we may characterize the relation as part of a
1-to-1 onto function. (Contributed by RP , 29-May-2021)
Ref
Expression
Hypotheses
ntrnei.o
⊢ O = i ∈ V , j ∈ V ⟼ k ∈ 𝒫 j i ⟼ l ∈ j ⟼ m ∈ i | l ∈ k ⁡ m
ntrnei.f
⊢ F = 𝒫 B O B
ntrnei.r
⊢ φ → I F N
Assertion
ntrneif1o
⊢ φ → F : 𝒫 B 𝒫 B ⟶ 1-1 onto 𝒫 𝒫 B B
Proof
Step
Hyp
Ref
Expression
1
ntrnei.o
⊢ O = i ∈ V , j ∈ V ⟼ k ∈ 𝒫 j i ⟼ l ∈ j ⟼ m ∈ i | l ∈ k ⁡ m
2
ntrnei.f
⊢ F = 𝒫 B O B
3
ntrnei.r
⊢ φ → I F N
4
1 2 3
ntrneibex
⊢ φ → B ∈ V
5
4
pwexd
⊢ φ → 𝒫 B ∈ V
6
1 5 4 2
fsovf1od
⊢ φ → F : 𝒫 B 𝒫 B ⟶ 1-1 onto 𝒫 𝒫 B B