Metamath Proof Explorer


Theorem ntrneif1o

Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , we may characterize the relation as part of a 1-to-1 onto function. (Contributed by RP, 29-May-2021)

Ref Expression
Hypotheses ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
ntrnei.f F = 𝒫 B O B
ntrnei.r φ I F N
Assertion ntrneif1o φ F : 𝒫 B 𝒫 B 1-1 onto 𝒫 𝒫 B B

Proof

Step Hyp Ref Expression
1 ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
2 ntrnei.f F = 𝒫 B O B
3 ntrnei.r φ I F N
4 1 2 3 ntrneibex φ B V
5 4 pwexd φ 𝒫 B V
6 1 5 4 2 fsovf1od φ F : 𝒫 B 𝒫 B 1-1 onto 𝒫 𝒫 B B