Metamath Proof Explorer


Theorem ntrneircomplex

Description: The relative complement of the class S exists as a subset of the base set. (Contributed by RP, 26-Jun-2021)

Ref Expression
Hypotheses ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
ntrnei.f F = 𝒫 B O B
ntrnei.r φ I F N
Assertion ntrneircomplex φ B S 𝒫 B

Proof

Step Hyp Ref Expression
1 ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
2 ntrnei.f F = 𝒫 B O B
3 ntrnei.r φ I F N
4 1 2 3 ntrneibex φ B V
5 difssd φ B S B
6 4 5 sselpwd φ B S 𝒫 B