Metamath Proof Explorer


Theorem numclwwlk1lem2fv

Description: Value of the function T . (Contributed by Alexander van der Vekens, 20-Sep-2018) (Revised by AV, 29-May-2021) (Revised by AV, 31-Oct-2022)

Ref Expression
Hypotheses extwwlkfab.v V=VtxG
extwwlkfab.c C=vV,n2wvClWWalksNOnGn|wn2=v
extwwlkfab.f F=XClWWalksNOnGN2
numclwwlk.t T=uXCNuprefixN2uN1
Assertion numclwwlk1lem2fv WXCNTW=WprefixN2WN1

Proof

Step Hyp Ref Expression
1 extwwlkfab.v V=VtxG
2 extwwlkfab.c C=vV,n2wvClWWalksNOnGn|wn2=v
3 extwwlkfab.f F=XClWWalksNOnGN2
4 numclwwlk.t T=uXCNuprefixN2uN1
5 oveq1 u=WuprefixN2=WprefixN2
6 fveq1 u=WuN1=WN1
7 5 6 opeq12d u=WuprefixN2uN1=WprefixN2WN1
8 opex WprefixN2WN1V
9 7 4 8 fvmpt WXCNTW=WprefixN2WN1