Metamath Proof Explorer


Theorem nvcom

Description: The vector addition (group) operation is commutative. (Contributed by NM, 4-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nvgcl.1 X=BaseSetU
nvgcl.2 G=+vU
Assertion nvcom UNrmCVecAXBXAGB=BGA

Proof

Step Hyp Ref Expression
1 nvgcl.1 X=BaseSetU
2 nvgcl.2 G=+vU
3 2 nvablo UNrmCVecGAbelOp
4 1 2 bafval X=ranG
5 4 ablocom GAbelOpAXBXAGB=BGA
6 3 5 syl3an1 UNrmCVecAXBXAGB=BGA