Metamath Proof Explorer


Theorem nvm1

Description: The norm of the negative of a vector. (Contributed by NM, 28-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses nvs.1 X=BaseSetU
nvs.4 S=𝑠OLDU
nvs.6 N=normCVU
Assertion nvm1 UNrmCVecAXN-1SA=NA

Proof

Step Hyp Ref Expression
1 nvs.1 X=BaseSetU
2 nvs.4 S=𝑠OLDU
3 nvs.6 N=normCVU
4 neg1cn 1
5 1 2 3 nvs UNrmCVec1AXN-1SA=1NA
6 4 5 mp3an2 UNrmCVecAXN-1SA=1NA
7 ax-1cn 1
8 7 absnegi 1=1
9 abs1 1=1
10 8 9 eqtri 1=1
11 10 oveq1i 1NA=1NA
12 1 3 nvcl UNrmCVecAXNA
13 12 recnd UNrmCVecAXNA
14 13 mullidd UNrmCVecAX1NA=NA
15 11 14 eqtrid UNrmCVecAX1NA=NA
16 6 15 eqtrd UNrmCVecAXN-1SA=NA