Metamath Proof Explorer


Theorem nvdif

Description: The norm of the difference between two vectors. (Contributed by NM, 1-Dec-2006) (New usage is discouraged.)

Ref Expression
Hypotheses nvdif.1 X = BaseSet U
nvdif.2 G = + v U
nvdif.4 S = 𝑠OLD U
nvdif.6 N = norm CV U
Assertion nvdif U NrmCVec A X B X N A G -1 S B = N B G -1 S A

Proof

Step Hyp Ref Expression
1 nvdif.1 X = BaseSet U
2 nvdif.2 G = + v U
3 nvdif.4 S = 𝑠OLD U
4 nvdif.6 N = norm CV U
5 simp1 U NrmCVec A X B X U NrmCVec
6 neg1cn 1
7 6 a1i U NrmCVec A X B X 1
8 simp3 U NrmCVec A X B X B X
9 1 3 nvscl U NrmCVec 1 A X -1 S A X
10 6 9 mp3an2 U NrmCVec A X -1 S A X
11 10 3adant3 U NrmCVec A X B X -1 S A X
12 1 2 3 nvdi U NrmCVec 1 B X -1 S A X -1 S B G -1 S A = -1 S B G -1 S -1 S A
13 5 7 8 11 12 syl13anc U NrmCVec A X B X -1 S B G -1 S A = -1 S B G -1 S -1 S A
14 1 3 nvnegneg U NrmCVec A X -1 S -1 S A = A
15 14 3adant3 U NrmCVec A X B X -1 S -1 S A = A
16 15 oveq2d U NrmCVec A X B X -1 S B G -1 S -1 S A = -1 S B G A
17 1 3 nvscl U NrmCVec 1 B X -1 S B X
18 6 17 mp3an2 U NrmCVec B X -1 S B X
19 18 3adant2 U NrmCVec A X B X -1 S B X
20 simp2 U NrmCVec A X B X A X
21 1 2 nvcom U NrmCVec -1 S B X A X -1 S B G A = A G -1 S B
22 5 19 20 21 syl3anc U NrmCVec A X B X -1 S B G A = A G -1 S B
23 13 16 22 3eqtrd U NrmCVec A X B X -1 S B G -1 S A = A G -1 S B
24 23 fveq2d U NrmCVec A X B X N -1 S B G -1 S A = N A G -1 S B
25 1 2 nvgcl U NrmCVec B X -1 S A X B G -1 S A X
26 5 8 11 25 syl3anc U NrmCVec A X B X B G -1 S A X
27 1 3 4 nvm1 U NrmCVec B G -1 S A X N -1 S B G -1 S A = N B G -1 S A
28 5 26 27 syl2anc U NrmCVec A X B X N -1 S B G -1 S A = N B G -1 S A
29 24 28 eqtr3d U NrmCVec A X B X N A G -1 S B = N B G -1 S A