Metamath Proof Explorer


Theorem nvpi

Description: The norm of a vector plus the imaginary scalar product of another. (Contributed by NM, 2-Feb-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nvdif.1 X=BaseSetU
nvdif.2 G=+vU
nvdif.4 S=𝑠OLDU
nvdif.6 N=normCVU
Assertion nvpi UNrmCVecAXBXNAGiSB=NBGiSA

Proof

Step Hyp Ref Expression
1 nvdif.1 X=BaseSetU
2 nvdif.2 G=+vU
3 nvdif.4 S=𝑠OLDU
4 nvdif.6 N=normCVU
5 simp1 UNrmCVecAXBXUNrmCVec
6 ax-icn i
7 1 3 nvscl UNrmCVeciBXiSBX
8 6 7 mp3an2 UNrmCVecBXiSBX
9 8 3adant2 UNrmCVecAXBXiSBX
10 1 2 nvgcl UNrmCVecAXiSBXAGiSBX
11 9 10 syld3an3 UNrmCVecAXBXAGiSBX
12 1 4 nvcl UNrmCVecAGiSBXNAGiSB
13 5 11 12 syl2anc UNrmCVecAXBXNAGiSB
14 13 recnd UNrmCVecAXBXNAGiSB
15 14 mullidd UNrmCVecAXBX1NAGiSB=NAGiSB
16 6 absnegi i=i
17 absi i=1
18 16 17 eqtri i=1
19 18 oveq1i iNAGiSB=1NAGiSB
20 negicn i
21 1 3 4 nvs UNrmCVeciAGiSBXNiSAGiSB=iNAGiSB
22 20 21 mp3an2 UNrmCVecAGiSBXNiSAGiSB=iNAGiSB
23 5 11 22 syl2anc UNrmCVecAXBXNiSAGiSB=iNAGiSB
24 simp2 UNrmCVecAXBXAX
25 1 2 3 nvdi UNrmCVeciAXiSBXiSAGiSB=iSAGiSiSB
26 20 25 mp3anr1 UNrmCVecAXiSBXiSAGiSB=iSAGiSiSB
27 5 24 9 26 syl12anc UNrmCVecAXBXiSAGiSB=iSAGiSiSB
28 6 6 mulneg1i ii=ii
29 ixi ii=1
30 29 negeqi ii=-1
31 negneg1e1 -1=1
32 30 31 eqtri ii=1
33 28 32 eqtri ii=1
34 33 oveq1i iiSB=1SB
35 1 3 nvsass UNrmCVeciiBXiiSB=iSiSB
36 20 35 mp3anr1 UNrmCVeciBXiiSB=iSiSB
37 6 36 mpanr1 UNrmCVecBXiiSB=iSiSB
38 1 3 nvsid UNrmCVecBX1SB=B
39 34 37 38 3eqtr3a UNrmCVecBXiSiSB=B
40 39 3adant2 UNrmCVecAXBXiSiSB=B
41 40 oveq2d UNrmCVecAXBXiSAGiSiSB=iSAGB
42 1 3 nvscl UNrmCVeciAXiSAX
43 20 42 mp3an2 UNrmCVecAXiSAX
44 43 3adant3 UNrmCVecAXBXiSAX
45 1 2 nvcom UNrmCVeciSAXBXiSAGB=BGiSA
46 44 45 syld3an2 UNrmCVecAXBXiSAGB=BGiSA
47 27 41 46 3eqtrd UNrmCVecAXBXiSAGiSB=BGiSA
48 47 fveq2d UNrmCVecAXBXNiSAGiSB=NBGiSA
49 23 48 eqtr3d UNrmCVecAXBXiNAGiSB=NBGiSA
50 19 49 eqtr3id UNrmCVecAXBX1NAGiSB=NBGiSA
51 15 50 eqtr3d UNrmCVecAXBXNAGiSB=NBGiSA