Step |
Hyp |
Ref |
Expression |
1 |
|
nvs.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
nvs.4 |
⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) |
3 |
|
nvs.6 |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
4 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
5 |
1 2 3
|
nvs |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( - 1 𝑆 𝐴 ) ) = ( ( abs ‘ - 1 ) · ( 𝑁 ‘ 𝐴 ) ) ) |
6 |
4 5
|
mp3an2 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( - 1 𝑆 𝐴 ) ) = ( ( abs ‘ - 1 ) · ( 𝑁 ‘ 𝐴 ) ) ) |
7 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
8 |
7
|
absnegi |
⊢ ( abs ‘ - 1 ) = ( abs ‘ 1 ) |
9 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
10 |
8 9
|
eqtri |
⊢ ( abs ‘ - 1 ) = 1 |
11 |
10
|
oveq1i |
⊢ ( ( abs ‘ - 1 ) · ( 𝑁 ‘ 𝐴 ) ) = ( 1 · ( 𝑁 ‘ 𝐴 ) ) |
12 |
1 3
|
nvcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℝ ) |
13 |
12
|
recnd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℂ ) |
14 |
13
|
mulid2d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 1 · ( 𝑁 ‘ 𝐴 ) ) = ( 𝑁 ‘ 𝐴 ) ) |
15 |
11 14
|
syl5eq |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( abs ‘ - 1 ) · ( 𝑁 ‘ 𝐴 ) ) = ( 𝑁 ‘ 𝐴 ) ) |
16 |
6 15
|
eqtrd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( - 1 𝑆 𝐴 ) ) = ( 𝑁 ‘ 𝐴 ) ) |