Metamath Proof Explorer


Theorem nvrcan

Description: Right cancellation law for vector addition. (Contributed by NM, 4-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nvgcl.1 X=BaseSetU
nvgcl.2 G=+vU
Assertion nvrcan UNrmCVecAXBXCXAGC=BGCA=B

Proof

Step Hyp Ref Expression
1 nvgcl.1 X=BaseSetU
2 nvgcl.2 G=+vU
3 2 nvgrp UNrmCVecGGrpOp
4 1 2 bafval X=ranG
5 4 grporcan GGrpOpAXBXCXAGC=BGCA=B
6 3 5 sylan UNrmCVecAXBXCXAGC=BGCA=B