Metamath Proof Explorer


Theorem o1sub2

Description: The product of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Hypotheses o1add2.1 φxABV
o1add2.2 φxACV
o1add2.3 φxAB𝑂1
o1add2.4 φxAC𝑂1
Assertion o1sub2 φxABC𝑂1

Proof

Step Hyp Ref Expression
1 o1add2.1 φxABV
2 o1add2.2 φxACV
3 o1add2.3 φxAB𝑂1
4 o1add2.4 φxAC𝑂1
5 1 ralrimiva φxABV
6 dmmptg xABVdomxAB=A
7 5 6 syl φdomxAB=A
8 o1dm xAB𝑂1domxAB
9 3 8 syl φdomxAB
10 7 9 eqsstrrd φA
11 reex V
12 11 ssex AAV
13 10 12 syl φAV
14 eqidd φxAB=xAB
15 eqidd φxAC=xAC
16 13 1 2 14 15 offval2 φxABfxAC=xABC
17 o1sub xAB𝑂1xAC𝑂1xABfxAC𝑂1
18 3 4 17 syl2anc φxABfxAC𝑂1
19 16 18 eqeltrrd φxABC𝑂1