Metamath Proof Explorer


Theorem oacl

Description: Closure law for ordinal addition. Proposition 8.2 of TakeutiZaring p. 57. Remark 2.8 of Schloeder p. 5. (Contributed by NM, 5-May-1995)

Ref Expression
Assertion oacl AOnBOnA+𝑜BOn

Proof

Step Hyp Ref Expression
1 oveq2 x=A+𝑜x=A+𝑜
2 1 eleq1d x=A+𝑜xOnA+𝑜On
3 oveq2 x=yA+𝑜x=A+𝑜y
4 3 eleq1d x=yA+𝑜xOnA+𝑜yOn
5 oveq2 x=sucyA+𝑜x=A+𝑜sucy
6 5 eleq1d x=sucyA+𝑜xOnA+𝑜sucyOn
7 oveq2 x=BA+𝑜x=A+𝑜B
8 7 eleq1d x=BA+𝑜xOnA+𝑜BOn
9 oa0 AOnA+𝑜=A
10 9 eleq1d AOnA+𝑜OnAOn
11 10 ibir AOnA+𝑜On
12 onsuc A+𝑜yOnsucA+𝑜yOn
13 oasuc AOnyOnA+𝑜sucy=sucA+𝑜y
14 13 eleq1d AOnyOnA+𝑜sucyOnsucA+𝑜yOn
15 12 14 imbitrrid AOnyOnA+𝑜yOnA+𝑜sucyOn
16 15 expcom yOnAOnA+𝑜yOnA+𝑜sucyOn
17 vex xV
18 iunon xVyxA+𝑜yOnyxA+𝑜yOn
19 17 18 mpan yxA+𝑜yOnyxA+𝑜yOn
20 oalim AOnxVLimxA+𝑜x=yxA+𝑜y
21 17 20 mpanr1 AOnLimxA+𝑜x=yxA+𝑜y
22 21 eleq1d AOnLimxA+𝑜xOnyxA+𝑜yOn
23 19 22 imbitrrid AOnLimxyxA+𝑜yOnA+𝑜xOn
24 23 expcom LimxAOnyxA+𝑜yOnA+𝑜xOn
25 2 4 6 8 11 16 24 tfinds3 BOnAOnA+𝑜BOn
26 25 impcom AOnBOnA+𝑜BOn