Description: Closure law for ordinal addition. Proposition 8.2 of TakeutiZaring p. 57. Remark 2.8 of Schloeder p. 5. (Contributed by NM, 5-May-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | oacl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | 1 | eleq1d | |
3 | oveq2 | |
|
4 | 3 | eleq1d | |
5 | oveq2 | |
|
6 | 5 | eleq1d | |
7 | oveq2 | |
|
8 | 7 | eleq1d | |
9 | oa0 | |
|
10 | 9 | eleq1d | |
11 | 10 | ibir | |
12 | onsuc | |
|
13 | oasuc | |
|
14 | 13 | eleq1d | |
15 | 12 14 | imbitrrid | |
16 | 15 | expcom | |
17 | vex | |
|
18 | iunon | |
|
19 | 17 18 | mpan | |
20 | oalim | |
|
21 | 17 20 | mpanr1 | |
22 | 21 | eleq1d | |
23 | 19 22 | imbitrrid | |
24 | 23 | expcom | |
25 | 2 4 6 8 11 16 24 | tfinds3 | |
26 | 25 | impcom | |