Description: Given C is a limit ordinal, the sum of any ordinal with an ordinal less than C is less than the sum of the first ordinal with C . Lemma 3.5 of Schloeder p. 7. (Contributed by RP, 29-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | oaltublim | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limord | |
|
2 | elex | |
|
3 | 1 2 | anim12i | |
4 | elon2 | |
|
5 | 3 4 | sylibr | |
6 | 5 | 3ad2ant3 | |
7 | simp1 | |
|
8 | 6 7 | jca | |
9 | simp2 | |
|
10 | oaordi | |
|
11 | 8 9 10 | sylc | |