Metamath Proof Explorer


Theorem oaltublim

Description: Given C is a limit ordinal, the sum of any ordinal with an ordinal less than C is less than the sum of the first ordinal with C . Lemma 3.5 of Schloeder p. 7. (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion oaltublim AOnBCLimCCVA+𝑜BA+𝑜C

Proof

Step Hyp Ref Expression
1 limord LimCOrdC
2 elex CVCV
3 1 2 anim12i LimCCVOrdCCV
4 elon2 COnOrdCCV
5 3 4 sylibr LimCCVCOn
6 5 3ad2ant3 AOnBCLimCCVCOn
7 simp1 AOnBCLimCCVAOn
8 6 7 jca AOnBCLimCCVCOnAOn
9 simp2 AOnBCLimCCVBC
10 oaordi COnAOnBCA+𝑜BA+𝑜C
11 8 9 10 sylc AOnBCLimCCVA+𝑜BA+𝑜C