Metamath Proof Explorer


Theorem oaord1

Description: An ordinal is less than its sum with a nonzero ordinal. Theorem 18 of Suppes p. 209 and its converse. (Contributed by NM, 6-Dec-2004)

Ref Expression
Assertion oaord1 AOnBOnBAA+𝑜B

Proof

Step Hyp Ref Expression
1 0elon On
2 oaord OnBOnAOnBA+𝑜A+𝑜B
3 1 2 mp3an1 BOnAOnBA+𝑜A+𝑜B
4 oa0 AOnA+𝑜=A
5 4 adantl BOnAOnA+𝑜=A
6 5 eleq1d BOnAOnA+𝑜A+𝑜BAA+𝑜B
7 3 6 bitrd BOnAOnBAA+𝑜B
8 7 ancoms AOnBOnBAA+𝑜B