Description: When omega is added on the right to ordinals zero and one, ordering of the sums is not equivalent to the ordering of the ordinals on the left. Remark 3.9 of Schloeder p. 8. (Contributed by RP, 29-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | oaordnrex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0lt1o | |
|
2 | ordom | |
|
3 | ordirr | |
|
4 | omelon | |
|
5 | oa0r | |
|
6 | 4 5 | ax-mp | |
7 | 1oaomeqom | |
|
8 | 6 7 | eleq12i | |
9 | 3 8 | sylnibr | |
10 | 2 9 | ax-mp | |
11 | 1 10 | 2th | |
12 | xor3 | |
|
13 | 11 12 | mpbir | |