Metamath Proof Explorer


Theorem oaordnrex

Description: When omega is added on the right to ordinals zero and one, ordering of the sums is not equivalent to the ordering of the ordinals on the left. Remark 3.9 of Schloeder p. 8. (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion oaordnrex ¬1𝑜+𝑜ω1𝑜+𝑜ω

Proof

Step Hyp Ref Expression
1 0lt1o 1𝑜
2 ordom Ordω
3 ordirr Ordω¬ωω
4 omelon ωOn
5 oa0r ωOn+𝑜ω=ω
6 4 5 ax-mp +𝑜ω=ω
7 1oaomeqom 1𝑜+𝑜ω=ω
8 6 7 eleq12i +𝑜ω1𝑜+𝑜ωωω
9 3 8 sylnibr Ordω¬+𝑜ω1𝑜+𝑜ω
10 2 9 ax-mp ¬+𝑜ω1𝑜+𝑜ω
11 1 10 2th 1𝑜¬+𝑜ω1𝑜+𝑜ω
12 xor3 ¬1𝑜+𝑜ω1𝑜+𝑜ω1𝑜¬+𝑜ω1𝑜+𝑜ω
13 11 12 mpbir ¬1𝑜+𝑜ω1𝑜+𝑜ω