Metamath Proof Explorer


Theorem oaword1

Description: An ordinal is less than or equal to its sum with another. Part of Exercise 5 of TakeutiZaring p. 62. Lemma 3.2 of Schloeder p. 7. (For the other part see oaord1 .) (Contributed by NM, 6-Dec-2004)

Ref Expression
Assertion oaword1 AOnBOnAA+𝑜B

Proof

Step Hyp Ref Expression
1 oa0 AOnA+𝑜=A
2 1 adantr AOnBOnA+𝑜=A
3 0ss B
4 0elon On
5 oaword OnBOnAOnBA+𝑜A+𝑜B
6 5 3com13 AOnBOnOnBA+𝑜A+𝑜B
7 4 6 mp3an3 AOnBOnBA+𝑜A+𝑜B
8 3 7 mpbii AOnBOnA+𝑜A+𝑜B
9 2 8 eqsstrrd AOnBOnAA+𝑜B