Metamath Proof Explorer


Theorem ocvsscon

Description: Two ways to say that S and T are orthogonal subspaces. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypotheses ocvlsp.v V=BaseW
ocvlsp.o ˙=ocvW
Assertion ocvsscon WPreHilSVTVS˙TT˙S

Proof

Step Hyp Ref Expression
1 ocvlsp.v V=BaseW
2 ocvlsp.o ˙=ocvW
3 1 2 ocvocv WPreHilTVT˙˙T
4 3 3adant2 WPreHilSVTVT˙˙T
5 2 ocv2ss S˙T˙˙T˙S
6 sstr2 T˙˙T˙˙T˙ST˙S
7 4 5 6 syl2im WPreHilSVTVS˙TT˙S
8 1 2 ocvocv WPreHilSVS˙˙S
9 8 3adant3 WPreHilSVTVS˙˙S
10 2 ocv2ss T˙S˙˙S˙T
11 sstr2 S˙˙S˙˙S˙TS˙T
12 9 10 11 syl2im WPreHilSVTVT˙SS˙T
13 7 12 impbid WPreHilSVTVS˙TT˙S