Metamath Proof Explorer


Theorem oddpwdcv

Description: Lemma for eulerpart : value of the F function. (Contributed by Thierry Arnoux, 9-Sep-2017)

Ref Expression
Hypotheses oddpwdc.j J=z|¬2z
oddpwdc.f F=xJ,y02yx
Assertion oddpwdcv WJ×0FW=22ndW1stW

Proof

Step Hyp Ref Expression
1 oddpwdc.j J=z|¬2z
2 oddpwdc.f F=xJ,y02yx
3 1st2nd2 WJ×0W=1stW2ndW
4 3 fveq2d WJ×0FW=F1stW2ndW
5 df-ov 1stWF2ndW=F1stW2ndW
6 5 a1i WJ×01stWF2ndW=F1stW2ndW
7 elxp6 WJ×0W=1stW2ndW1stWJ2ndW0
8 7 simprbi WJ×01stWJ2ndW0
9 oveq2 x=1stW2yx=2y1stW
10 oveq2 y=2ndW2y=22ndW
11 10 oveq1d y=2ndW2y1stW=22ndW1stW
12 ovex 22ndW1stWV
13 9 11 2 12 ovmpo 1stWJ2ndW01stWF2ndW=22ndW1stW
14 8 13 syl WJ×01stWF2ndW=22ndW1stW
15 4 6 14 3eqtr2d WJ×0FW=22ndW1stW