Metamath Proof Explorer


Theorem oduleg

Description: Truth of the less-equal relation in an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015)

Ref Expression
Hypotheses oduval.d D=ODualO
oduval.l ˙=O
oduleg.g G=D
Assertion oduleg AVBWAGBB˙A

Proof

Step Hyp Ref Expression
1 oduval.d D=ODualO
2 oduval.l ˙=O
3 oduleg.g G=D
4 1 2 oduleval ˙-1=D
5 3 4 eqtr4i G=˙-1
6 5 breqi AGBA˙-1B
7 brcnvg AVBWA˙-1BB˙A
8 6 7 bitrid AVBWAGBB˙A