Description: Truth of the less-equal relation in an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oduval.d | |- D = ( ODual ` O ) |
|
| oduval.l | |- .<_ = ( le ` O ) |
||
| oduleg.g | |- G = ( le ` D ) |
||
| Assertion | oduleg | |- ( ( A e. V /\ B e. W ) -> ( A G B <-> B .<_ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oduval.d | |- D = ( ODual ` O ) |
|
| 2 | oduval.l | |- .<_ = ( le ` O ) |
|
| 3 | oduleg.g | |- G = ( le ` D ) |
|
| 4 | 1 2 | oduleval | |- `' .<_ = ( le ` D ) |
| 5 | 3 4 | eqtr4i | |- G = `' .<_ |
| 6 | 5 | breqi | |- ( A G B <-> A `' .<_ B ) |
| 7 | brcnvg | |- ( ( A e. V /\ B e. W ) -> ( A `' .<_ B <-> B .<_ A ) ) |
|
| 8 | 6 7 | bitrid | |- ( ( A e. V /\ B e. W ) -> ( A G B <-> B .<_ A ) ) |