Metamath Proof Explorer


Theorem odumeet

Description: Meets in a dual order are joins in the original. (Contributed by Stefan O'Rear, 29-Jan-2015)

Ref Expression
Hypotheses oduglb.d D=ODualO
odumeet.j ˙=joinO
Assertion odumeet ˙=meetD

Proof

Step Hyp Ref Expression
1 oduglb.d D=ODualO
2 odumeet.j ˙=joinO
3 eqid lubO=lubO
4 1 3 oduglb OVlubO=glbD
5 4 breqd OVablubOcabglbDc
6 5 oprabbidv OVabc|ablubOc=abc|abglbDc
7 eqid joinO=joinO
8 3 7 joinfval OVjoinO=abc|ablubOc
9 1 fvexi DV
10 eqid glbD=glbD
11 eqid meetD=meetD
12 10 11 meetfval DVmeetD=abc|abglbDc
13 9 12 mp1i OVmeetD=abc|abglbDc
14 6 8 13 3eqtr4d OVjoinO=meetD
15 fvprc ¬OVjoinO=
16 fvprc ¬OVODualO=
17 1 16 eqtrid ¬OVD=
18 17 fveq2d ¬OVmeetD=meet
19 meet0 meet=
20 18 19 eqtrdi ¬OVmeetD=
21 15 20 eqtr4d ¬OVjoinO=meetD
22 14 21 pm2.61i joinO=meetD
23 2 22 eqtri ˙=meetD