Metamath Proof Explorer


Theorem ofceq

Description: Equality theorem for function/constant operation. (Contributed by Thierry Arnoux, 30-Jan-2017)

Ref Expression
Assertion ofceq R=SfcR=fcS

Proof

Step Hyp Ref Expression
1 oveq R=SfxRc=fxSc
2 1 mpteq2dv R=SxdomffxRc=xdomffxSc
3 2 mpoeq3dv R=SfV,cVxdomffxRc=fV,cVxdomffxSc
4 df-ofc fcR=fV,cVxdomffxRc
5 df-ofc fcS=fV,cVxdomffxSc
6 3 4 5 3eqtr4g R=SfcR=fcS