Metamath Proof Explorer


Theorem om00el

Description: The product of two nonzero ordinal numbers is nonzero. (Contributed by NM, 28-Dec-2004)

Ref Expression
Assertion om00el AOnBOnA𝑜BAB

Proof

Step Hyp Ref Expression
1 om00 AOnBOnA𝑜B=A=B=
2 1 necon3abid AOnBOnA𝑜B¬A=B=
3 omcl AOnBOnA𝑜BOn
4 on0eln0 A𝑜BOnA𝑜BA𝑜B
5 3 4 syl AOnBOnA𝑜BA𝑜B
6 on0eln0 AOnAA
7 on0eln0 BOnBB
8 6 7 bi2anan9 AOnBOnABAB
9 neanior AB¬A=B=
10 8 9 bitrdi AOnBOnAB¬A=B=
11 2 5 10 3bitr4d AOnBOnA𝑜BAB