Metamath Proof Explorer


Theorem om0suclim

Description: Closed form expression of the value of ordinal multiplication for the cases when the second ordinal is zero, a successor ordinal, or a limit ordinal. Definition 2.5 of Schloeder p. 4. See om0 , omsuc , and omlim . (Contributed by RP, 18-Jan-2025)

Ref Expression
Assertion om0suclim AOnBOnB=A𝑜B=B=sucCCOnA𝑜B=A𝑜C+𝑜ALimBA𝑜B=cBA𝑜c

Proof

Step Hyp Ref Expression
1 om0 AOnA𝑜=
2 omsuc AOnCOnA𝑜sucC=A𝑜C+𝑜A
3 omlim AOnBOnLimBA𝑜B=cBA𝑜c
4 3 anassrs AOnBOnLimBA𝑜B=cBA𝑜c
5 1 2 4 onov0suclim AOnBOnB=A𝑜B=B=sucCCOnA𝑜B=A𝑜C+𝑜ALimBA𝑜B=cBA𝑜c