Metamath Proof Explorer


Theorem omlim

Description: Ordinal multiplication with a limit ordinal. Definition 8.15 of TakeutiZaring p. 62. Definition 2.5 of Schloeder p. 4. (Contributed by NM, 3-Aug-2004) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion omlim AOnBCLimBA𝑜B=xBA𝑜x

Proof

Step Hyp Ref Expression
1 limelon BCLimBBOn
2 simpr BCLimBLimB
3 1 2 jca BCLimBBOnLimB
4 rdglim2a BOnLimBrecyVy+𝑜AB=xBrecyVy+𝑜Ax
5 4 adantl AOnBOnLimBrecyVy+𝑜AB=xBrecyVy+𝑜Ax
6 omv AOnBOnA𝑜B=recyVy+𝑜AB
7 onelon BOnxBxOn
8 omv AOnxOnA𝑜x=recyVy+𝑜Ax
9 7 8 sylan2 AOnBOnxBA𝑜x=recyVy+𝑜Ax
10 9 anassrs AOnBOnxBA𝑜x=recyVy+𝑜Ax
11 10 iuneq2dv AOnBOnxBA𝑜x=xBrecyVy+𝑜Ax
12 6 11 eqeq12d AOnBOnA𝑜B=xBA𝑜xrecyVy+𝑜AB=xBrecyVy+𝑜Ax
13 12 adantrr AOnBOnLimBA𝑜B=xBA𝑜xrecyVy+𝑜AB=xBrecyVy+𝑜Ax
14 5 13 mpbird AOnBOnLimBA𝑜B=xBA𝑜x
15 3 14 sylan2 AOnBCLimBA𝑜B=xBA𝑜x