Description: Lemma for omopthi . (Contributed by Scott Fenton, 18-Apr-2012) (Revised by Mario Carneiro, 17-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | omopthlem1.1 | |
|
omopthlem1.2 | |
||
Assertion | omopthlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omopthlem1.1 | |
|
2 | omopthlem1.2 | |
|
3 | peano2 | |
|
4 | 1 3 | ax-mp | |
5 | nnmwordi | |
|
6 | 4 2 4 5 | mp3an | |
7 | nnmwordri | |
|
8 | 4 2 2 7 | mp3an | |
9 | 6 8 | sstrd | |
10 | 1 | nnoni | |
11 | 2 | nnoni | |
12 | 10 11 | onsucssi | |
13 | 1 1 | nnmcli | |
14 | 2onn | |
|
15 | 1 14 | nnmcli | |
16 | 13 15 | nnacli | |
17 | 16 | nnoni | |
18 | 2 2 | nnmcli | |
19 | 18 | nnoni | |
20 | 17 19 | onsucssi | |
21 | 4 1 | nnmcli | |
22 | nnasuc | |
|
23 | 21 1 22 | mp2an | |
24 | nnmsuc | |
|
25 | 4 1 24 | mp2an | |
26 | nnaass | |
|
27 | 13 1 1 26 | mp3an | |
28 | nnmcom | |
|
29 | 4 1 28 | mp2an | |
30 | nnmsuc | |
|
31 | 1 1 30 | mp2an | |
32 | 29 31 | eqtri | |
33 | 32 | oveq1i | |
34 | nnm2 | |
|
35 | 1 34 | ax-mp | |
36 | 35 | oveq2i | |
37 | 27 33 36 | 3eqtr4ri | |
38 | suceq | |
|
39 | 37 38 | ax-mp | |
40 | 23 25 39 | 3eqtr4ri | |
41 | 40 | sseq1i | |
42 | 20 41 | bitri | |
43 | 9 12 42 | 3imtr4i | |