Metamath Proof Explorer


Theorem omopthlem1

Description: Lemma for omopthi . (Contributed by Scott Fenton, 18-Apr-2012) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Hypotheses omopthlem1.1 Aω
omopthlem1.2 Cω
Assertion omopthlem1 ACA𝑜A+𝑜A𝑜2𝑜C𝑜C

Proof

Step Hyp Ref Expression
1 omopthlem1.1 Aω
2 omopthlem1.2 Cω
3 peano2 AωsucAω
4 1 3 ax-mp sucAω
5 nnmwordi sucAωCωsucAωsucACsucA𝑜sucAsucA𝑜C
6 4 2 4 5 mp3an sucACsucA𝑜sucAsucA𝑜C
7 nnmwordri sucAωCωCωsucACsucA𝑜CC𝑜C
8 4 2 2 7 mp3an sucACsucA𝑜CC𝑜C
9 6 8 sstrd sucACsucA𝑜sucAC𝑜C
10 1 nnoni AOn
11 2 nnoni COn
12 10 11 onsucssi ACsucAC
13 1 1 nnmcli A𝑜Aω
14 2onn 2𝑜ω
15 1 14 nnmcli A𝑜2𝑜ω
16 13 15 nnacli A𝑜A+𝑜A𝑜2𝑜ω
17 16 nnoni A𝑜A+𝑜A𝑜2𝑜On
18 2 2 nnmcli C𝑜Cω
19 18 nnoni C𝑜COn
20 17 19 onsucssi A𝑜A+𝑜A𝑜2𝑜C𝑜CsucA𝑜A+𝑜A𝑜2𝑜C𝑜C
21 4 1 nnmcli sucA𝑜Aω
22 nnasuc sucA𝑜AωAωsucA𝑜A+𝑜sucA=sucsucA𝑜A+𝑜A
23 21 1 22 mp2an sucA𝑜A+𝑜sucA=sucsucA𝑜A+𝑜A
24 nnmsuc sucAωAωsucA𝑜sucA=sucA𝑜A+𝑜sucA
25 4 1 24 mp2an sucA𝑜sucA=sucA𝑜A+𝑜sucA
26 nnaass A𝑜AωAωAωA𝑜A+𝑜A+𝑜A=A𝑜A+𝑜A+𝑜A
27 13 1 1 26 mp3an A𝑜A+𝑜A+𝑜A=A𝑜A+𝑜A+𝑜A
28 nnmcom sucAωAωsucA𝑜A=A𝑜sucA
29 4 1 28 mp2an sucA𝑜A=A𝑜sucA
30 nnmsuc AωAωA𝑜sucA=A𝑜A+𝑜A
31 1 1 30 mp2an A𝑜sucA=A𝑜A+𝑜A
32 29 31 eqtri sucA𝑜A=A𝑜A+𝑜A
33 32 oveq1i sucA𝑜A+𝑜A=A𝑜A+𝑜A+𝑜A
34 nnm2 AωA𝑜2𝑜=A+𝑜A
35 1 34 ax-mp A𝑜2𝑜=A+𝑜A
36 35 oveq2i A𝑜A+𝑜A𝑜2𝑜=A𝑜A+𝑜A+𝑜A
37 27 33 36 3eqtr4ri A𝑜A+𝑜A𝑜2𝑜=sucA𝑜A+𝑜A
38 suceq A𝑜A+𝑜A𝑜2𝑜=sucA𝑜A+𝑜AsucA𝑜A+𝑜A𝑜2𝑜=sucsucA𝑜A+𝑜A
39 37 38 ax-mp sucA𝑜A+𝑜A𝑜2𝑜=sucsucA𝑜A+𝑜A
40 23 25 39 3eqtr4ri sucA𝑜A+𝑜A𝑜2𝑜=sucA𝑜sucA
41 40 sseq1i sucA𝑜A+𝑜A𝑜2𝑜C𝑜CsucA𝑜sucAC𝑜C
42 20 41 bitri A𝑜A+𝑜A𝑜2𝑜C𝑜CsucA𝑜sucAC𝑜C
43 9 12 42 3imtr4i ACA𝑜A+𝑜A𝑜2𝑜C𝑜C