Metamath Proof Explorer


Theorem onfrALTlem1

Description: Lemma for onfrALT . (Contributed by Alan Sare, 22-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion onfrALTlem1 aOnaxaax=yaay=

Proof

Step Hyp Ref Expression
1 19.8a xaax=xxaax=
2 1 a1i aOnaxaax=xxaax=
3 cbvexsv xxaax=yyxxaax=
4 2 3 imbitrdi aOnaxaax=yyxxaax=
5 sbsbc yxxaax=[˙y/x]˙xaax=
6 onfrALTlem4 [˙y/x]˙xaax=yaay=
7 5 6 bitri yxxaax=yaay=
8 7 exbii yyxxaax=yyaay=
9 4 8 imbitrdi aOnaxaax=yyaay=
10 df-rex yaay=yyaay=
11 9 10 imbitrrdi aOnaxaax=yaay=