Metamath Proof Explorer


Theorem onsse

Description: Surreal less-than is set-like over the surreal ordinals. (Contributed by Scott Fenton, 6-Nov-2025)

Ref Expression
Assertion onsse < s Se On s

Proof

Step Hyp Ref Expression
1 epse E Se On
2 onsiso bday On s Isom < s , E On s On
3 isose bday On s Isom < s , E On s On < s Se On s E Se On
4 2 3 ax-mp < s Se On s E Se On
5 1 4 mpbir < s Se On s