Metamath Proof Explorer


Theorem onsupintrab2

Description: The supremum of a set of ordinals is the intersection of every ordinal greater-than-or-equal to every member of the set. (Contributed by RP, 23-Jan-2025)

Ref Expression
Assertion onsupintrab2 A𝒫OnsupAOnE=xOn|yAyx

Proof

Step Hyp Ref Expression
1 elpwb A𝒫OnAVAOn
2 onsupintrab AOnAVsupAOnE=xOn|yAyx
3 2 ancoms AVAOnsupAOnE=xOn|yAyx
4 1 3 sylbi A𝒫OnsupAOnE=xOn|yAyx