Metamath Proof Explorer


Theorem opabbi2dv

Description: Deduce equality of a relation and an ordered-pair class abstraction. Compare eqabdv . (Contributed by NM, 24-Feb-2014)

Ref Expression
Hypotheses opabbi2dv.1 RelA
opabbi2dv.3 φxyAψ
Assertion opabbi2dv φA=xy|ψ

Proof

Step Hyp Ref Expression
1 opabbi2dv.1 RelA
2 opabbi2dv.3 φxyAψ
3 opabid2 RelAxy|xyA=A
4 1 3 ax-mp xy|xyA=A
5 2 opabbidv φxy|xyA=xy|ψ
6 4 5 eqtr3id φA=xy|ψ