Metamath Proof Explorer


Theorem opabbii

Description: Equivalent wff's yield equal class abstractions. (Contributed by NM, 15-May-1995)

Ref Expression
Hypothesis opabbii.1 φψ
Assertion opabbii xy|φ=xy|ψ

Proof

Step Hyp Ref Expression
1 opabbii.1 φψ
2 eqid z=z
3 1 a1i z=zφψ
4 3 opabbidv z=zxy|φ=xy|ψ
5 2 4 ax-mp xy|φ=xy|ψ