Metamath Proof Explorer


Theorem oppchomfpropd

Description: If two categories have the same hom-sets, so do their opposites. (Contributed by Mario Carneiro, 26-Jan-2017)

Ref Expression
Hypothesis oppchomfpropd.1 φHom𝑓C=Hom𝑓D
Assertion oppchomfpropd φHom𝑓oppCatC=Hom𝑓oppCatD

Proof

Step Hyp Ref Expression
1 oppchomfpropd.1 φHom𝑓C=Hom𝑓D
2 1 tposeqd φtposHom𝑓C=tposHom𝑓D
3 eqid oppCatC=oppCatC
4 eqid Hom𝑓C=Hom𝑓C
5 3 4 oppchomf tposHom𝑓C=Hom𝑓oppCatC
6 eqid oppCatD=oppCatD
7 eqid Hom𝑓D=Hom𝑓D
8 6 7 oppchomf tposHom𝑓D=Hom𝑓oppCatD
9 2 5 8 3eqtr3g φHom𝑓oppCatC=Hom𝑓oppCatD