Metamath Proof Explorer


Theorem oppccomfpropd

Description: If two categories have the same hom-sets and composition, so do their opposites. (Contributed by Mario Carneiro, 26-Jan-2017)

Ref Expression
Hypotheses oppchomfpropd.1 φ Hom 𝑓 C = Hom 𝑓 D
oppccomfpropd.1 φ comp 𝑓 C = comp 𝑓 D
Assertion oppccomfpropd φ comp 𝑓 oppCat C = comp 𝑓 oppCat D

Proof

Step Hyp Ref Expression
1 oppchomfpropd.1 φ Hom 𝑓 C = Hom 𝑓 D
2 oppccomfpropd.1 φ comp 𝑓 C = comp 𝑓 D
3 eqid Base C = Base C
4 eqid Hom C = Hom C
5 eqid comp C = comp C
6 eqid comp D = comp D
7 1 ad2antrr φ x Base C y Base C z Base C f x Hom oppCat C y g y Hom oppCat C z Hom 𝑓 C = Hom 𝑓 D
8 2 ad2antrr φ x Base C y Base C z Base C f x Hom oppCat C y g y Hom oppCat C z comp 𝑓 C = comp 𝑓 D
9 simplr3 φ x Base C y Base C z Base C f x Hom oppCat C y g y Hom oppCat C z z Base C
10 simplr2 φ x Base C y Base C z Base C f x Hom oppCat C y g y Hom oppCat C z y Base C
11 simplr1 φ x Base C y Base C z Base C f x Hom oppCat C y g y Hom oppCat C z x Base C
12 simprr φ x Base C y Base C z Base C f x Hom oppCat C y g y Hom oppCat C z g y Hom oppCat C z
13 eqid oppCat C = oppCat C
14 4 13 oppchom y Hom oppCat C z = z Hom C y
15 12 14 eleqtrdi φ x Base C y Base C z Base C f x Hom oppCat C y g y Hom oppCat C z g z Hom C y
16 simprl φ x Base C y Base C z Base C f x Hom oppCat C y g y Hom oppCat C z f x Hom oppCat C y
17 4 13 oppchom x Hom oppCat C y = y Hom C x
18 16 17 eleqtrdi φ x Base C y Base C z Base C f x Hom oppCat C y g y Hom oppCat C z f y Hom C x
19 3 4 5 6 7 8 9 10 11 15 18 comfeqval φ x Base C y Base C z Base C f x Hom oppCat C y g y Hom oppCat C z f z y comp C x g = f z y comp D x g
20 3 5 13 11 10 9 oppcco φ x Base C y Base C z Base C f x Hom oppCat C y g y Hom oppCat C z g x y comp oppCat C z f = f z y comp C x g
21 eqid Base D = Base D
22 eqid oppCat D = oppCat D
23 1 homfeqbas φ Base C = Base D
24 23 ad2antrr φ x Base C y Base C z Base C f x Hom oppCat C y g y Hom oppCat C z Base C = Base D
25 11 24 eleqtrd φ x Base C y Base C z Base C f x Hom oppCat C y g y Hom oppCat C z x Base D
26 10 24 eleqtrd φ x Base C y Base C z Base C f x Hom oppCat C y g y Hom oppCat C z y Base D
27 9 24 eleqtrd φ x Base C y Base C z Base C f x Hom oppCat C y g y Hom oppCat C z z Base D
28 21 6 22 25 26 27 oppcco φ x Base C y Base C z Base C f x Hom oppCat C y g y Hom oppCat C z g x y comp oppCat D z f = f z y comp D x g
29 19 20 28 3eqtr4d φ x Base C y Base C z Base C f x Hom oppCat C y g y Hom oppCat C z g x y comp oppCat C z f = g x y comp oppCat D z f
30 29 ralrimivva φ x Base C y Base C z Base C f x Hom oppCat C y g y Hom oppCat C z g x y comp oppCat C z f = g x y comp oppCat D z f
31 30 ralrimivvva φ x Base C y Base C z Base C f x Hom oppCat C y g y Hom oppCat C z g x y comp oppCat C z f = g x y comp oppCat D z f
32 eqid comp oppCat C = comp oppCat C
33 eqid comp oppCat D = comp oppCat D
34 eqid Hom oppCat C = Hom oppCat C
35 13 3 oppcbas Base C = Base oppCat C
36 35 a1i φ Base C = Base oppCat C
37 22 21 oppcbas Base D = Base oppCat D
38 23 37 eqtrdi φ Base C = Base oppCat D
39 1 oppchomfpropd φ Hom 𝑓 oppCat C = Hom 𝑓 oppCat D
40 32 33 34 36 38 39 comfeq φ comp 𝑓 oppCat C = comp 𝑓 oppCat D x Base C y Base C z Base C f x Hom oppCat C y g y Hom oppCat C z g x y comp oppCat C z f = g x y comp oppCat D z f
41 31 40 mpbird φ comp 𝑓 oppCat C = comp 𝑓 oppCat D