Database
BASIC CATEGORY THEORY
Categories
Opposite category
oppcid
Next ⟩
oppccat
Metamath Proof Explorer
Ascii
Unicode
Theorem
oppcid
Description:
Identity function of an opposite category.
(Contributed by
Mario Carneiro
, 2-Jan-2017)
Ref
Expression
Hypotheses
oppcbas.1
⊢
O
=
oppCat
⁡
C
oppcid.2
⊢
B
=
Id
⁡
C
Assertion
oppcid
⊢
C
∈
Cat
→
Id
⁡
O
=
B
Proof
Step
Hyp
Ref
Expression
1
oppcbas.1
⊢
O
=
oppCat
⁡
C
2
oppcid.2
⊢
B
=
Id
⁡
C
3
1
oppccatid
⊢
C
∈
Cat
→
O
∈
Cat
∧
Id
⁡
O
=
Id
⁡
C
4
3
simprd
⊢
C
∈
Cat
→
Id
⁡
O
=
Id
⁡
C
5
4
2
eqtr4di
⊢
C
∈
Cat
→
Id
⁡
O
=
B