Metamath Proof Explorer


Theorem oppcmndc

Description: The opposite category of a category whose base set is a singleton or an empty set has the same base and hom-sets as the original category. (Contributed by Zhi Wang, 16-Oct-2025)

Ref Expression
Hypotheses oppcendc.o O = oppCat C
oppcendc.b B = Base C
oppcmndc.x φ B = X
Assertion oppcmndc φ Hom 𝑓 C = Hom 𝑓 O

Proof

Step Hyp Ref Expression
1 oppcendc.o O = oppCat C
2 oppcendc.b B = Base C
3 oppcmndc.x φ B = X
4 eqid Hom C = Hom C
5 3 oppcmndclem φ x B y B x y x Hom C y =
6 1 2 4 5 oppcendc φ Hom 𝑓 C = Hom 𝑓 O