Metamath Proof Explorer


Theorem oppcval

Description: Value of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses oppcval.b B=BaseC
oppcval.h H=HomC
oppcval.x ·˙=compC
oppcval.o O=oppCatC
Assertion oppcval CVO=CsSetHomndxtposHsSetcompndxuB×B,zBtposz2ndu·˙1stu

Proof

Step Hyp Ref Expression
1 oppcval.b B=BaseC
2 oppcval.h H=HomC
3 oppcval.x ·˙=compC
4 oppcval.o O=oppCatC
5 elex CVCV
6 id c=Cc=C
7 fveq2 c=CHomc=HomC
8 7 2 eqtr4di c=CHomc=H
9 8 tposeqd c=CtposHomc=tposH
10 9 opeq2d c=CHomndxtposHomc=HomndxtposH
11 6 10 oveq12d c=CcsSetHomndxtposHomc=CsSetHomndxtposH
12 fveq2 c=CBasec=BaseC
13 12 1 eqtr4di c=CBasec=B
14 13 sqxpeqd c=CBasec×Basec=B×B
15 fveq2 c=Ccompc=compC
16 15 3 eqtr4di c=Ccompc=·˙
17 16 oveqd c=Cz2nducompc1stu=z2ndu·˙1stu
18 17 tposeqd c=Ctposz2nducompc1stu=tposz2ndu·˙1stu
19 14 13 18 mpoeq123dv c=CuBasec×Basec,zBasectposz2nducompc1stu=uB×B,zBtposz2ndu·˙1stu
20 19 opeq2d c=CcompndxuBasec×Basec,zBasectposz2nducompc1stu=compndxuB×B,zBtposz2ndu·˙1stu
21 11 20 oveq12d c=CcsSetHomndxtposHomcsSetcompndxuBasec×Basec,zBasectposz2nducompc1stu=CsSetHomndxtposHsSetcompndxuB×B,zBtposz2ndu·˙1stu
22 df-oppc oppCat=cVcsSetHomndxtposHomcsSetcompndxuBasec×Basec,zBasectposz2nducompc1stu
23 ovex CsSetHomndxtposHsSetcompndxuB×B,zBtposz2ndu·˙1stuV
24 21 22 23 fvmpt CVoppCatC=CsSetHomndxtposHsSetcompndxuB×B,zBtposz2ndu·˙1stu
25 5 24 syl CVoppCatC=CsSetHomndxtposHsSetcompndxuB×B,zBtposz2ndu·˙1stu
26 4 25 eqtrid CVO=CsSetHomndxtposHsSetcompndxuB×B,zBtposz2ndu·˙1stu