Metamath Proof Explorer


Theorem oppfoppc

Description: The opposite functor is a functor on opposite categories. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Hypotheses oppfoppc.o O = oppCat C
oppfoppc.p P = oppCat D
oppfoppc.f φ F C Func D G
Assertion oppfoppc Could not format assertion : No typesetting found for |- ( ph -> ( F oppFunc G ) e. ( O Func P ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 oppfoppc.o O = oppCat C
2 oppfoppc.p P = oppCat D
3 oppfoppc.f φ F C Func D G
4 oppfval Could not format ( F ( C Func D ) G -> ( F oppFunc G ) = <. F , tpos G >. ) : No typesetting found for |- ( F ( C Func D ) G -> ( F oppFunc G ) = <. F , tpos G >. ) with typecode |-
5 3 4 syl Could not format ( ph -> ( F oppFunc G ) = <. F , tpos G >. ) : No typesetting found for |- ( ph -> ( F oppFunc G ) = <. F , tpos G >. ) with typecode |-
6 1 2 3 funcoppc φ F O Func P tpos G
7 df-br F O Func P tpos G F tpos G O Func P
8 6 7 sylib φ F tpos G O Func P
9 5 8 eqeltrd Could not format ( ph -> ( F oppFunc G ) e. ( O Func P ) ) : No typesetting found for |- ( ph -> ( F oppFunc G ) e. ( O Func P ) ) with typecode |-