Metamath Proof Explorer


Theorem opprirred

Description: Irreducibility is symmetric, so the irreducible elements of the opposite ring are the same as the original ring. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses opprirred.1 S=opprR
opprirred.2 I=IrredR
Assertion opprirred I=IrredS

Proof

Step Hyp Ref Expression
1 opprirred.1 S=opprR
2 opprirred.2 I=IrredR
3 ralcom zBaseRUnitRyBaseRUnitRzRyxyBaseRUnitRzBaseRUnitRzRyx
4 eqid BaseR=BaseR
5 eqid R=R
6 eqid S=S
7 4 5 1 6 opprmul ySz=zRy
8 7 neeq1i ySzxzRyx
9 8 2ralbii yBaseRUnitRzBaseRUnitRySzxyBaseRUnitRzBaseRUnitRzRyx
10 3 9 bitr4i zBaseRUnitRyBaseRUnitRzRyxyBaseRUnitRzBaseRUnitRySzx
11 10 anbi2i xBaseRUnitRzBaseRUnitRyBaseRUnitRzRyxxBaseRUnitRyBaseRUnitRzBaseRUnitRySzx
12 eqid UnitR=UnitR
13 eqid BaseRUnitR=BaseRUnitR
14 4 12 2 13 5 isirred xIxBaseRUnitRzBaseRUnitRyBaseRUnitRzRyx
15 1 4 opprbas BaseR=BaseS
16 12 1 opprunit UnitR=UnitS
17 eqid IrredS=IrredS
18 15 16 17 13 6 isirred xIrredSxBaseRUnitRyBaseRUnitRzBaseRUnitRySzx
19 11 14 18 3bitr4i xIxIrredS
20 19 eqriv I=IrredS