Description: Irreducibility is symmetric, so the irreducible elements of the opposite ring are the same as the original ring. (Contributed by Mario Carneiro, 4-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opprirred.1 | |
|
opprirred.2 | |
||
Assertion | opprirred | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprirred.1 | |
|
2 | opprirred.2 | |
|
3 | ralcom | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | 4 5 1 6 | opprmul | |
8 | 7 | neeq1i | |
9 | 8 | 2ralbii | |
10 | 3 9 | bitr4i | |
11 | 10 | anbi2i | |
12 | eqid | |
|
13 | eqid | |
|
14 | 4 12 2 13 5 | isirred | |
15 | 1 4 | opprbas | |
16 | 12 1 | opprunit | |
17 | eqid | |
|
18 | 15 16 17 13 6 | isirred | |
19 | 11 14 18 | 3bitr4i | |
20 | 19 | eqriv | |