Metamath Proof Explorer


Theorem opprmulfval

Description: Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Hypotheses opprval.1 B=BaseR
opprval.2 ·˙=R
opprval.3 O=opprR
opprmulfval.4 ˙=O
Assertion opprmulfval ˙=tpos·˙

Proof

Step Hyp Ref Expression
1 opprval.1 B=BaseR
2 opprval.2 ·˙=R
3 opprval.3 O=opprR
4 opprmulfval.4 ˙=O
5 1 2 3 opprval O=RsSetndxtpos·˙
6 5 fveq2i O=RsSetndxtpos·˙
7 2 fvexi ·˙V
8 7 tposex tpos·˙V
9 mulridx 𝑟=Slotndx
10 9 setsid RVtpos·˙Vtpos·˙=RsSetndxtpos·˙
11 8 10 mpan2 RVtpos·˙=RsSetndxtpos·˙
12 6 11 eqtr4id RVO=tpos·˙
13 tpos0 tpos=
14 9 str0 =
15 13 14 eqtr2i =tpos
16 fvprc ¬RVopprR=
17 3 16 eqtrid ¬RVO=
18 17 fveq2d ¬RVO=
19 fvprc ¬RVR=
20 2 19 eqtrid ¬RV·˙=
21 20 tposeqd ¬RVtpos·˙=tpos
22 15 18 21 3eqtr4a ¬RVO=tpos·˙
23 12 22 pm2.61i O=tpos·˙
24 4 23 eqtri ˙=tpos·˙