Metamath Proof Explorer


Theorem opprunit

Description: Being a unit is a symmetric property, so it transfers to the opposite ring. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses opprunit.1 U=UnitR
opprunit.2 S=opprR
Assertion opprunit U=UnitS

Proof

Step Hyp Ref Expression
1 opprunit.1 U=UnitR
2 opprunit.2 S=opprR
3 eqid BaseR=BaseR
4 2 3 opprbas BaseR=BaseS
5 eqid S=S
6 eqid opprS=opprS
7 eqid opprS=opprS
8 4 5 6 7 opprmul yopprSx=xSy
9 eqid R=R
10 3 9 2 5 opprmul xSy=yRx
11 8 10 eqtr2i yRx=yopprSx
12 11 eqeq1i yRx=1RyopprSx=1R
13 12 rexbii yBaseRyRx=1RyBaseRyopprSx=1R
14 13 anbi2i xBaseRyBaseRyRx=1RxBaseRyBaseRyopprSx=1R
15 eqid rR=rR
16 3 15 9 dvdsr xrR1RxBaseRyBaseRyRx=1R
17 6 4 opprbas BaseR=BaseopprS
18 eqid ropprS=ropprS
19 17 18 7 dvdsr xropprS1RxBaseRyBaseRyopprSx=1R
20 14 16 19 3bitr4i xrR1RxropprS1R
21 20 anbi2ci xrR1RxrS1RxrS1RxropprS1R
22 eqid 1R=1R
23 eqid rS=rS
24 1 22 15 2 23 isunit xUxrR1RxrS1R
25 eqid UnitS=UnitS
26 2 22 oppr1 1R=1S
27 25 26 23 6 18 isunit xUnitSxrS1RxropprS1R
28 21 24 27 3bitr4i xUxUnitS
29 28 eqriv U=UnitS