Description: Being a unit is a symmetric property, so it transfers to the opposite ring. (Contributed by Mario Carneiro, 4-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opprunit.1 | |
|
opprunit.2 | |
||
Assertion | opprunit | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprunit.1 | |
|
2 | opprunit.2 | |
|
3 | eqid | |
|
4 | 2 3 | opprbas | |
5 | eqid | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | 4 5 6 7 | opprmul | |
9 | eqid | |
|
10 | 3 9 2 5 | opprmul | |
11 | 8 10 | eqtr2i | |
12 | 11 | eqeq1i | |
13 | 12 | rexbii | |
14 | 13 | anbi2i | |
15 | eqid | |
|
16 | 3 15 9 | dvdsr | |
17 | 6 4 | opprbas | |
18 | eqid | |
|
19 | 17 18 7 | dvdsr | |
20 | 14 16 19 | 3bitr4i | |
21 | 20 | anbi2ci | |
22 | eqid | |
|
23 | eqid | |
|
24 | 1 22 15 2 23 | isunit | |
25 | eqid | |
|
26 | 2 22 | oppr1 | |
27 | 25 26 23 6 18 | isunit | |
28 | 21 24 27 | 3bitr4i | |
29 | 28 | eqriv | |