Description: Ordered power series form a ring. (Contributed by Stefan O'Rear, 22-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opsrring.o | |
|
opsrring.i | |
||
opsrring.r | |
||
opsrring.t | |
||
Assertion | opsrring | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opsrring.o | |
|
2 | opsrring.i | |
|
3 | opsrring.r | |
|
4 | opsrring.t | |
|
5 | eqid | |
|
6 | 5 2 3 | psrring | |
7 | eqidd | |
|
8 | 5 1 4 | opsrbas | |
9 | 5 1 4 | opsrplusg | |
10 | 9 | oveqdr | |
11 | 5 1 4 | opsrmulr | |
12 | 11 | oveqdr | |
13 | 7 8 10 12 | ringpropd | |
14 | 6 13 | mpbid | |