Metamath Proof Explorer


Theorem opsrsca

Description: The scalar ring of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015) (Revised by Mario Carneiro, 30-Aug-2015) (Revised by AV, 1-Nov-2024)

Ref Expression
Hypotheses opsrbas.s S=ImPwSerR
opsrbas.o O=IordPwSerRT
opsrbas.t φTI×I
opsrsca.i φIV
opsrsca.r φRW
Assertion opsrsca φR=ScalarO

Proof

Step Hyp Ref Expression
1 opsrbas.s S=ImPwSerR
2 opsrbas.o O=IordPwSerRT
3 opsrbas.t φTI×I
4 opsrsca.i φIV
5 opsrsca.r φRW
6 1 4 5 psrsca φR=ScalarS
7 scaid Scalar=SlotScalarndx
8 plendxnscandx ndxScalarndx
9 8 necomi Scalarndxndx
10 1 2 3 7 9 opsrbaslem φScalarS=ScalarO
11 6 10 eqtrd φR=ScalarO