Metamath Proof Explorer


Theorem opsrso

Description: The ordered power series structure is a totally ordered set. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypotheses opsrso.o O=IordPwSerRT
opsrso.i φIV
opsrso.r φRToset
opsrso.t φTI×I
opsrso.w φTWeI
opsrso.l ˙=<O
opsrso.b B=BaseO
Assertion opsrso φ˙OrB

Proof

Step Hyp Ref Expression
1 opsrso.o O=IordPwSerRT
2 opsrso.i φIV
3 opsrso.r φRToset
4 opsrso.t φTI×I
5 opsrso.w φTWeI
6 opsrso.l ˙=<O
7 opsrso.b B=BaseO
8 1 2 3 4 5 opsrtos φOToset
9 eqid O=O
10 7 9 6 tosso OTosetOToset˙OrBIBO
11 10 ibi OToset˙OrBIBO
12 8 11 syl φ˙OrBIBO
13 12 simpld φ˙OrB