Metamath Proof Explorer


Theorem opthg2

Description: Ordered pair theorem. (Contributed by NM, 14-Oct-2005) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion opthg2 CVDWAB=CDA=CB=D

Proof

Step Hyp Ref Expression
1 opthg CVDWCD=ABC=AD=B
2 eqcom AB=CDCD=AB
3 eqcom A=CC=A
4 eqcom B=DD=B
5 3 4 anbi12i A=CB=DC=AD=B
6 1 2 5 3bitr4g CVDWAB=CDA=CB=D