Metamath Proof Explorer


Theorem ordtopt0

Description: An ordinal topology is T_0. (Contributed by Chen-Pang He, 8-Nov-2015)

Ref Expression
Assertion ordtopt0 OrdJJTopJKol2

Proof

Step Hyp Ref Expression
1 ordtop OrdJJTopJJ
2 onsuct0 JOnsucJKol2
3 2 ordtoplem OrdJJJJKol2
4 1 3 sylbid OrdJJTopJKol2
5 t0top JKol2JTop
6 4 5 impbid1 OrdJJTopJKol2